Band-Structure Effects in the Spin Relaxation of Conduction Electrons

نویسندگان

  • J. Fabian
  • S. Das Sarma
چکیده

Spin relaxation of conduction electrons in metals is significantly influenced by the Fermi surface topology. Electrons near Brillouin zone boundaries, special symmetry points, or accidental degeneracy lines have spin flip rates much higher than an average electron. A realistic calculation and analytical estimates show that these regions dominate the spin relaxation, explaining why polyvalent metals have much higher spin relaxation rates (up to three orders of magnitude) than similar monovalent metals. This suggests that spin relaxation in metals can be tailored by band-structure modifications like doping, alloying, reducing the dimensionality, etc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin Relaxation of Conduction Electrons in Polyvalent Metals: Theory and a Realistic Calculation

Relaxation of electronic spins in metals is significantly enhanced whenever a Fermi surface crosses Brillouin zone boundaries, special symmetry points, or lines of accidental degeneracy. A realistic calculation shows that if aluminum had one valence electron, its spin relaxation would be slower by nearly two orders of magnitude. This not only solves a longstanding experimental puzzle, but also ...

متن کامل

Anisotropic Exchange Interaction of Localized Conduction-band Electrons in Semiconductor Structures

The spin-orbit interaction in semiconductors is shown to result in an anisotropic contribution into the exchange Hamiltonian of a pair of localized conduction-band electrons. The anisotropic exchange interaction exists in semiconductor structures which are not symmetric with respect to spatial inversion, for instance in bulk zinc-blend semiconductors. The interaction has both symmetric and anti...

متن کامل

برهمکنش‌های فوق ریز در بلور USb2

  The hyperfine interactions at the uranium site in the antiferromagnetic USb2 compound were calculated within the density functional theory (DFT) employing the augmented plane wave plus local orbital (APW+lo) method. We investigated the dependence of the nuclear quadruple interactions on the magnetic structure in USb2 compound. The investigation were performed applying the so called “band corr...

متن کامل

Spin relaxation of conduction electrons

Prospect of building electronic devices in which electron spins store and transport information has revived interest in the spin relaxation of conduction electrons. Since spin-polarized currents cannot flow indefinitely, basic spin-electronic devices must be smaller than the distance electrons diffuse without losing its spin memory. Some recent experimental and theoretical effort has been devot...

متن کامل

Field-induced negative differential spin lifetime in silicon.

We show that the electric-field-induced thermal asymmetry between the electron and lattice systems in pure silicon substantially impacts the identity of the dominant spin relaxation mechanism. Comparison of empirical results from long-distance spin transport devices with detailed Monte Carlo simulations confirms a strong spin depolarization beyond what is expected from the standard Elliott-Yafe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999